
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Approximating values using 
interpolating polynomials



Introduction

• In this topic, we will

– Discuss how to design interpolating polynomials

– Observe how we can minimize the condition number of 
the system we must solve

– See how we can optimize the interpolating polynomials so 
as to make them work best with Horner’s rule

– Find interpolating polynomials that estimate the values in 
the middle of two, three and four points

– Find interpolating polynomials that estimate the values 
close to the most recent reading of two, three and four 
points
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Review

• Recall that most data comes from periodically sampled 
sensors and other devices

– We will assume that our values are equally sampled in 
either space or time

– Other techniques, such as finite-element methods, are 
beyond the scope of this course

• Thus, we will assume that:

– Our values are either xk = x0 + kh or tk = t0 + kDt

– We will assume the values are reasonably exact,
represented by f (xk) and y(tk)

– We will always design our polynomials to be optimally 
written for Horner’s rule

– Later, we will see techniques if there is significant error in 
the readings

Using interpolating polynomials

3



xk+1

Linear interpolation

• Suppose we have two points:

(xk–1, f (xk–1)) and (xk, f (xk))

– Alternatively,

(xk – h, f (xk – h)) and (xk, f (xk))

• The interpolating polynomial is

• Issues

– Nothing prevents these values from
being arbitrarily large

– Numerous
subtractions
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Linear interpolation

• Solution:

– Let us shift and scale the interval [xk – 1, xk] to [–0.5, 0.5]

– Now, we must solve

– Solving this yields 
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Linear interpolation

• Solution:

– Now, given                          , note that

– Also, if                                then

and 
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Linear interpolation

• Solution:

– Try something a little different: interpolate a1 + a0 though

(–0.5, f (xk–1)) and (0.5, f (xk))

– Now, we must solve

– Solving this yields: 
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Linear interpolation

• Thus, to estimate the value of at                           ,

we will evaluate this new expression at 

– This requires your design to always think
in terms of proportions relative to h

– Note that 
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Linear interpolation

• For example, suppose that we have the following data:

(853.4, 9.2) and (853.5, 9.5)

– Thus:

• The midpoint is 853.45

• The step size is h = 0.1

• The polynomial is 0.3 + 9.35

– If you wanted to approximate 853.4724,

we note this is 853.45 + 0.1·0.224

– Thus, 0.3·0.224 + 9.35 = 9.4172
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Quadratic interpolation

• Next, suppose we want to approximate values of f around xk

– Let us find an interpolating quadratic passing through 
the three points

(xk–1, f (xk–1)), (xk, f (xk)) and (xk+1, f (xk+1))
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Centered quadratic interpolation

• Instead, use the previous approach:

– Let us find an interpolating quadratic passing through 
the three points

(–1, f (xk–1)), (0, f (xk)) and (1, f (xk+1))

– The interpolating polynomial is

– As before, it approximates f at the point
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Centered quadratic interpolation

• Why is this beneficial?

– First, we are guaranteed that | | ≤ 0.5

– Thus, this is ideal for Horner’s rule as well as avoiding situations 

like subtractive cancellation or loss of precision

– Just like with Gaussian elimination with partial pivoting,

the multiplier is always less than or equal to one
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Centered quadratic interpolation

• For example, suppose that we have the following data:

(1025.012, –0.3), (1025.014, –0.1) and (1025.016, 0.4)

– Thus:

• The midpoint is 1025.014

• The step size is h = 0.002

• The polynomial is 0.15 2 + 0.35 – 0.1

– If you wanted to approximate 1025.01346,

we note this is 1025.014 + 0.002·(–0.27)

– Thus, (0.15·(–0.27) + 0.35)·(–0.27) – 0.1

=  –0.183565
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Centered quadratic interpolation

• For example, suppose that we have the following data:

(1025.012, –0.3), (1025.014, –0.1) and (1025.016, 0.4)

– Incidentally, if you were to find the interpolating polynomial 
without shifting and scaling, we’d have:

37501.36x2 – 76878662.68x + 39400763084.63
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Centered cubic interpolation

• Finally, suppose we have four points:

(xk–2, f (xk–2)), (xk–1, f (xk–1)), (xk, f (xk)) and (xk+1, f (xk+1))

– The interpolating polynomial is too large to display
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Centered cubic interpolation

• Again, we shift and scale the 

(–1.5, f (xk–2)), (–0.5, f (xk–1)), (0.5, f (xk)) and (1.5, f (xk+1))

– The interpolating polynomial is

– This approximates the function f at
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Centered cubic interpolation

• For example, suppose that we have the following data:

(105920, 22.3), (106040, 22.4) , (106160, 22.1) and (106280, 21.7)

– Thus:

• The midpoint is 106100

• The step size is h = 120

• The polynomial is 0.05  3 – 0.125  2 – 0.3125  + 2.228125 

– If you wanted to approximate at time 106157,

we note this is 106100 + 120·0.475

– Thus, ((0.05·0.475 – 0.125)·0.475 – 0.3125)·0.475 + 2.228125

= 22.109968
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Backward interpolating polynomials

• What happens if you only have prior information:

(tk–3, y(tk–3)), (tk–2, y(tk–1)), (tk–1, y(tk–1)) and (tk, y(tk))

– Question: Do we want to only approximate values in the past,
or do we want to extrapolate values into the future?

– Unfortunately, the error grows quickly outside any interval

tk – n, …, tk

– Using interpolating polynomials to estimate the value at tk+1

results in an error a minimum of eight times
larger than the estimate of any
value on the interval tk–1 < t < tk
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Backward quadratic interpolation

• Instead, we will focus only on formulas that approximate the
function on the interval

tk–1 < t < tk
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Backward quadratic interpolation

• As before, we will shift and scale

– Solving this, we get the formula:

– This formula approximates values for 

– The values are –0.5 ≤  ≤ 0.5
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Backward cubic interpolation

• Similarly, we could find an interpolating cubic:
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Implementations
template <typename T>

class Backward4 {

public:

Backward4( T y[4] );

T evaluate( T delta ) const;

private:

T coeffs_[4];

};
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template <typename T>

T Backward4<T>::evaluate( T delta ) const {

assert( (delta >= -0.5) && (delta <= 0.5) );

return (

(coeffs_[3]*delta + coeffs_[2])*delta + coeffs_[1]

)*delta + coeffs_[0];

}

template <typename T>

Backward4<T>::Backward4( T y[4] ):

coeffs_{ (y[0] - 5*y[1] + 15*y[2] +  5*y[3])/16.0,

(y[0] - 3*y[1] - 21*y[2] + 23*y[3])/24.0,

(-y[0] + 5*y[1] - 7*y[2] +  3*y[3])/4.0,

(-y[0] + 3*y[1] - 3*y[2] +    y[3])/6.0 } {

// Empty constructor

}

This C++ code is meant for demonstration purposes 
only and not required for the examination



Summary

– Linear

– Centered quadratic

– Centered cubic

– Backward quadratic

– Backward cubic
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Summary

– Linear

– Centered quadratic

– Centered cubic

– Backward quadratic

– Backward cubic
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Summary

• Following this topic, you now

– Understand that we can find interpolating polynomials that are 
designed to:

• Minimize the condition number

• Be appropriate for Horner’s rule and minimizing numeric error

– Understand how to use 2, 3 and 4 points to estimate values in the 

middle of these sets

– Understand how to use the last 2, 3 and 4 points to estimate values in 

the most recent time interval

– Know that this is useful only for interpolating values and not for 

extrapolation
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Using interpolating polynomials

29


