
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Approximating values using
interpolating polynomials

Introduction

• In this topic, we will

– Discuss how to design interpolating polynomials

– Observe how we can minimize the condition number of
the system we must solve

– See how we can optimize the interpolating polynomials so
as to make them work best with Horner’s rule

– Find interpolating polynomials that estimate the values in
the middle of two, three and four points

– Find interpolating polynomials that estimate the values
close to the most recent reading of two, three and four
points

Using interpolating polynomials

2

Review

• Recall that most data comes from periodically sampled
sensors and other devices

– We will assume that our values are equally sampled in
either space or time

– Other techniques, such as finite-element methods, are
beyond the scope of this course

• Thus, we will assume that:

– Our values are either xk = x0 + kh or tk = t0 + kDt

– We will assume the values are reasonably exact,
represented by f (xk) and y(tk)

– We will always design our polynomials to be optimally
written for Horner’s rule

– Later, we will see techniques if there is significant error in
the readings

Using interpolating polynomials

3

xk+1

Linear interpolation

• Suppose we have two points:

(xk–1, f (xk–1)) and (xk, f (xk))

– Alternatively,

(xk – h, f (xk – h)) and (xk, f (xk))

• The interpolating polynomial is

• Issues

– Nothing prevents these values from
being arbitrarily large

– Numerous
subtractions

Using interpolating polynomials

4xkxk–1xk–2

f (xk–1)
f (xk)

       1 1 1

1 1

k k k k k k

k k k k

f x f x f x x f x x
x

x x x x

  

 

 


 

Linear interpolation

• Solution:

– Let us shift and scale the interval [xk – 1, xk] to [–0.5, 0.5]

– Now, we must solve

– Solving this yields

Using interpolating polynomials

51.50.5

1 1

1 1

1 1 1

2 2

k k k k

k k k k

x x x x
x x

x x x x h h

 

 

 
  

 

–0.5–1.5

f (xk–1)
f (xk)

1 1

0

1 0.5

1 0.5

k

k

x c

x c

     
    

   

xk+1xkxk–1xk–2

f (xk–1)
f (xk)

Linear interpolation

• Solution:

– Now, given , note that

– Also, if then

and

Using interpolating polynomials

61.50.5

11

2

k kx x
x

h h




–0.5–1.5

f (xk–1)
f (xk)

xk+1xkxk–1xk–2

f (xk–1)
f (xk)

1
1

1
0.5

2

k k
k

x x
x

h h





   1 11

0
2 2

k k k kx x x x

h h

  
  11

0.5
2

k k
k

x x
x

h h

 
  

1

2

k kx x
x h

  1 11

2 2

k k k kx x x x
h

h h
    

   
 

11

2

k kx x
x

h
  

  
 

x 

Linear interpolation

• Solution:

– Try something a little different: interpolate a1 + a0 though

(–0.5, f (xk–1)) and (0.5, f (xk))

– Now, we must solve

– Solving this yields:

Using interpolating polynomials

71.50.5

   
   1

1
2

k k

k k

f x f x
f x f x  




   

–0.5–1.5

f (xk–1)
f (xk)

 

 
1 1

0

0.5 1

0.5 1

k

k

a f x

a f x

    
    

    

Linear interpolation

• Thus, to estimate the value of at ,

we will evaluate this new expression at

– This requires your design to always think
in terms of proportions relative to h

– Note that

Using interpolating polynomials

8

1

2

k kx x
h 



0.5 1
cond 2

0.5 1

 
 

 

   
   1

1
2

k k

k k

f x f x
f x f x  




   

1.50.5–0.5–1.5

f (xk–1)
f (xk)

11

2

k kx x
x

h
  

  
 

Linear interpolation

• For example, suppose that we have the following data:

(853.4, 9.2) and (853.5, 9.5)

– Thus:

• The midpoint is 853.45

• The step size is h = 0.1

• The polynomial is 0.3 + 9.35

– If you wanted to approximate 853.4724,

we note this is 853.45 + 0.1·0.224

– Thus, 0.3·0.224 + 9.35 = 9.4172

Using interpolating polynomials

9853.6853.5853.4853.3

9.2
9.5

1 853.4 853.5
853.4724

0.1 2

0.224


 

  
 



Quadratic interpolation

• Next, suppose we want to approximate values of f around xk

– Let us find an interpolating quadratic passing through
the three points

(xk–1, f (xk–1)), (xk, f (xk)) and (xk+1, f (xk+1))

Using interpolating polynomials

10xk+2xkxk+1xkxk–1xk–2

f (xk–1)
f (xk)

f (xk+1)

Centered quadratic interpolation

• Instead, use the previous approach:

– Let us find an interpolating quadratic passing through
the three points

(–1, f (xk–1)), (0, f (xk)) and (1, f (xk+1))

– The interpolating polynomial is

– As before, it approximates f at the point

Using interpolating polynomials

11210

f (xk–1)
f (xk)

f (xk+1)

         
 1 1 1 12

2

2 2

k k k k k

k

f x f x f x f x f x
f x      

 

kx h

 

 

 

2 1

1

0 1

1 1 1

0 0 1

1 1 1

k

k

k

a f x

a f x

a f x





    
   

    
    
    

–1–2

Centered quadratic interpolation

• Why is this beneficial?

– First, we are guaranteed that | | ≤ 0.5

– Thus, this is ideal for Horner’s rule as well as avoiding situations

like subtractive cancellation or loss of precision

– Just like with Gaussian elimination with partial pivoting,

the multiplier is always less than or equal to one

Using interpolating polynomials

12210–1–2

f (xk–1)
f (xk)

f (xk+1)

         
 1 1 1 12

2 2

k k k k k

k

f x f x f x f x f x
f x       

  
 

Centered quadratic interpolation

• For example, suppose that we have the following data:

(1025.012, –0.3), (1025.014, –0.1) and (1025.016, 0.4)

– Thus:

• The midpoint is 1025.014

• The step size is h = 0.002

• The polynomial is 0.15 2 + 0.35 – 0.1

– If you wanted to approximate 1025.01346,

we note this is 1025.014 + 0.002·(–0.27)

– Thus, (0.15·(–0.27) + 0.35)·(–0.27) – 0.1

= –0.183565

Using interpolating polynomials

13

1025.0181025.0161025.0141025.0121025.010

–0.3
–0.1

0.4

Centered quadratic interpolation

• For example, suppose that we have the following data:

(1025.012, –0.3), (1025.014, –0.1) and (1025.016, 0.4)

– Incidentally, if you were to find the interpolating polynomial
without shifting and scaling, we’d have:

37501.36x2 – 76878662.68x + 39400763084.63

Using interpolating polynomials

14

1025.0181025.0161025.0141025.0121025.010

–0.3
–0.1

0.4

Centered cubic interpolation

• Finally, suppose we have four points:

(xk–2, f (xk–2)), (xk–1, f (xk–1)), (xk, f (xk)) and (xk+1, f (xk+1))

– The interpolating polynomial is too large to display

Using interpolating polynomials

15xkxk+1xkxk–1xk–2

f (xk–2) f (xk–1)

f (xk)

f (xk+1)

Centered cubic interpolation

• Again, we shift and scale the

(–1.5, f (xk–2)), (–0.5, f (xk–1)), (0.5, f (xk)) and (1.5, f (xk+1))

– The interpolating polynomial is

– This approximates the function f at

Using interpolating polynomials

161.50.5–0.5–1.5

               

               

2 1 1 2 1 13 2

2 1 1 2 1 1

3 3

6 4

27 27 9 9

24 16

k k k k k k k k

k k k k k k k k

f x f x f x f x f x f x f x f x

f x f x f x f x f x f x f x f x

 



     

     

      


      
 

1

2

k kx x
h 



 

 

 

 

3 2

2 1

1

0 1

3.375 2.25 1.5 1

0.125 0.25 0.5 1

0.125 0.25 0.5 1

3.375 2.25 1.5 1

k

k

k

k

a f x

a f x

a f x

a f x







     
   

      
   
     

    

f (xk–2) f (xk–1)

f (xk)

f (xk+1)

Centered cubic interpolation

• For example, suppose that we have the following data:

(105920, 22.3), (106040, 22.4) , (106160, 22.1) and (106280, 21.7)

– Thus:

• The midpoint is 106100

• The step size is h = 120

• The polynomial is 0.05  3 – 0.125  2 – 0.3125  + 2.228125

– If you wanted to approximate at time 106157,

we note this is 106100 + 120·0.475

– Thus, ((0.05·0.475 – 0.125)·0.475 – 0.3125)·0.475 + 2.228125

= 22.109968

Using interpolating polynomials

171.50.5–0.5–1.5

22.3 22.4 22.1 21.7

Backward interpolating polynomials

• What happens if you only have prior information:

(tk–3, y(tk–3)), (tk–2, y(tk–1)), (tk–1, y(tk–1)) and (tk, y(tk))

– Question: Do we want to only approximate values in the past,
or do we want to extrapolate values into the future?

– Unfortunately, the error grows quickly outside any interval

tk – n, …, tk

– Using interpolating polynomials to estimate the value at tk+1

results in an error a minimum of eight times
larger than the estimate of any
value on the interval tk–1 < t < tk

Using interpolating polynomials

18tktk–1tk–2tk–3

y(tk–3)
y(tk–2)

y(tk–1)

y(tk)

Backward quadratic interpolation

• Instead, we will focus only on formulas that approximate the
function on the interval

tk–1 < t < tk

Using interpolating polynomials

19

y(tk–3)

tktk–1tk–2tk–3

y(tk–2)
y(tk–1)

y(tk)

Backward quadratic interpolation

• As before, we will shift and scale

– Solving this, we get the formula:

– This formula approximates values for

– The values are –0.5 ≤  ≤ 0.5

Using interpolating polynomials

200.5–0.5–1.5–2.5

y(tk–2)
y(tk–1)

y(tk)

     
    

     2 1 2 12

1

2 6 3

2 8

k k k k k k

k k

y t y t y t y t y t y t
y t y t    



     
   

 

 

 

 

2

1 1

0 2

0.25 0.5 1

0.25 0.5 1

2.25 1.5 1

k

k

k

a y t

a y t

a y t





   
   

     
        

1

2

k kt t
t 

 D

Backward cubic interpolation

• Similarly, we could find an interpolating cubic:

Using interpolating polynomials

210.5–0.5–1.5–2.5

y(tk–3)
y(tk–2)

y(tk–1)

y(tk)

               

               

3 2 1 3 2 13 2

3 2 1 3 2 1

3 3 5 7 3

6 4

3 21 23 5 15 5

24 16

k k k k k k k k

k k k k k k k k

y t y t y t y t y t y t y t y t

y t y t y t y t y t y t y t y t

 



     

     

       


     
 

Implementations
template <typename T>

class Backward4 {

public:

Backward4(T y[4]);

T evaluate(T delta) const;

private:

T coeffs_[4];

};

Using interpolating polynomials

22

template <typename T>

T Backward4<T>::evaluate(T delta) const {

assert((delta >= -0.5) && (delta <= 0.5));

return (

(coeffs_[3]*delta + coeffs_[2])*delta + coeffs_[1]

)*delta + coeffs_[0];

}

template <typename T>

Backward4<T>::Backward4(T y[4]):

coeffs_{ (y[0] - 5*y[1] + 15*y[2] + 5*y[3])/16.0,

(y[0] - 3*y[1] - 21*y[2] + 23*y[3])/24.0,

(-y[0] + 5*y[1] - 7*y[2] + 3*y[3])/4.0,

(-y[0] + 3*y[1] - 3*y[2] + y[3])/6.0 } {

// Empty constructor

}

This C++ code is meant for demonstration purposes
only and not required for the examination

Summary

– Linear

– Centered quadratic

– Centered cubic

– Backward quadratic

– Backward cubic

Using interpolating polynomials

23

11

2

k kx x
x

h
  

  
 

 
1

kx x
h

  

11

2

k kx x
x

h
  

  
 

11

2

k kt t
t

t
  

  
D  

11

2

k kx x
x

h
  

  
 

xkxk–1

xk+1xkxk–1

xk+1xkxk–1xk–2

tktk–1tk–2

tktk–1 xk–2xk–3

You don’t have to memorize these formulas; remember the idea

Summary

– Linear

– Centered quadratic

– Centered cubic

– Backward quadratic

– Backward cubic

Using interpolating polynomials

   
   1

1
2

k k

k k

f x f x
f x f x  




   

         
 1 1 1 12

2

2 2

k k k k k

k

f x f x f x f x f x
f x      

 

               

               

2 1 1 2 1 13 2

2 1 1 2 1 1

3 3

6 4

27 27 9 9

24 16

k k k k k k k k

k k k k k k k k

f x f x f x f x f x f x f x f x

f x f x f x f x f x f x f x f x

 



     

     

      


      
 

     
    

     2 1 2 12

1

2 6 3

2 8

k k k k k k

k k

y t y t y t y t y t y t
y t y t    



     
   

 

               

               

3 2 1 3 2 13 2

3 2 1 3 2 1

3 3 5 7 3

6 4

3 21 23 5 15 5

24 16

k k k k k k k k

k k k k k k k k

y t y t y t y t y t y t y t y t

y t y t y t y t y t y t y t y t

 



     

     

       


     
 

You don’t have to memorize these formulas; remember the idea

Summary

• Following this topic, you now

– Understand that we can find interpolating polynomials that are
designed to:

• Minimize the condition number

• Be appropriate for Horner’s rule and minimizing numeric error

– Understand how to use 2, 3 and 4 points to estimate values in the

middle of these sets

– Understand how to use the last 2, 3 and 4 points to estimate values in

the most recent time interval

– Know that this is useful only for interpolating values and not for

extrapolation

Using interpolating polynomials

25

References

[1] https://en.wikipedia.org/wiki/Polynomial_interpolation

Using interpolating polynomials

26

Acknowledgments

Brian Nguyen for noting an error in the order of the vector entries on p.18.

Using interpolating polynomials

27

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Using interpolating polynomials

28

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Using interpolating polynomials

29

